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There are plenty

of reasons why

we can forget

the distinction between

order and metric
fixpoint theorems.

(The usual suspects: A. Einstein or M. Twain)



Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map on a complete lattice has
the least and the greatest fixed point.

(Banach) A contraction on a complete metric space has a unique
fixed point.
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OUR GOAL: Show that both are instances of a single theorem with
a constructive proof.
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(Knaster-Tarski) An order-preserving map f: X — X on a complete
lattice has the least and the greatest fixed point.

Proof idea: Iterate f:

L, (L), F2(L), F3(L),...

and eventually you will reach the least fixed point. Flip the lattice
to get the greatest one.



Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map f: X — X on a complete
lattice has the least and the greatest fixed point.

Proof idea: Iterate f:

L, (L), F2(L), F3(L),...

and eventually you will reach the least fixed point. Flip the lattice
to get the greatest one.

(Banach) A contraction f: X — X on a complete metric space has
a unique fixed point.

Proof idea: lterate f:

x, f(x), fz(x), f3(x), ..

and no matter what x € X you started with, eventually you will
reach the same fixed point.



Unification

(Lawvere 1973) Orders and metric spaces are instances of
quantale-enriched categories.

(Edalat & Heckmann 1998) A topology of a complete metric space
is homeomorphic to a subspace Scott topology on maximal
elements of a continuous directed-complete partial order.



Unification a la Lawvere

A bit of cleaning first!
A metric on a set X:
dx: X x X = [0,00)

We use it as:
dX(va)vdX(y,z),-..
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Unification a la Lawvere

X(x,y) = X(y,x) = 0implies x =y
X(x,x) =0
X(x,y) < X(x,2) + X(z,y)

x<xy and y<xx imply x=y
X <x X
x<xz and z<xy imply x <xy

CONCLUSION: < is a partial order.
BETTER CONCLUSION:

Replace [0, 00] by {0, 00} to switch from metrics to orders.
Replace {0, 00} by [0, 00] to switch from orders to metrics.
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Unification a la Lawvere: the setup

Let Q be a complete lattice with + and 0.

A O-category is a set X with a structure X: X x X — Q satisfying:

X(x,y) = X(y,x) = 0implies x =y,
X(X,X) =0,
X(x,y) < X(x,z) + X(z, y).

For Q@ = 2 we recover partial orders.
For Q = [0, c0] we recover metric spaces.
But other choices of Q are possible too.
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satisfying:
Y (fx, fy) < X(x,y).
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More on the setup

A O-functor between Q-categories is a function f: X — Y
satisfying:
Y (fx, fy) < X(x,y).

2-functors are order-preserving maps.
[0, oo]-functors are non-expansive maps between metric spaces.

O-functors of type X — Y form a Q-category when considered
with the structure:

YX(f,g) := sup Y(fx, gx).
xeX
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from some N onwards, elements of the sequence are
arbitrarily close to each other.
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More on the setup

Consider a net (x;)jcs such that

from some N onwards, elements of the net are arbitrarily
close to each other.

For Q =2, (x)jes is eventually a directed set.
For Q = [0, 0], (xj)ies is a Cauchy net.
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More on the setup

We encode Cauchy nets/directed sets as maps of type XP — Q.
DEFINITION: An ideal on X is a map:

¢(z) := inf sup X(z, xx)
iel k>i

for some Cauchy net (x;)je/-

FACT: Ideals are Q-functors from X°P to Q. Hence
IX — )A(, where X = QX"
FACT: Ideals on X form a Q-category:

IX(¢, ) = sup(¥x — ¢x).
xeX



Last slide about the setup

DEFINITION: A Q-category X is I-complete if there exists a map
S: IX — X with

X(S¢7 X) = HX(¢7 X(_7X))

for all € IX and x € X.



Last slide about the setup

DEFINITION: A Q-category X is I-complete if there exists a map
S: IX — X with

X(S(bax) :HX(¢7X(_7X))
for all € IX and x € X.

IMPORTANT: .
Replacing I by (-) we have a notion of (-)-completeness.
Replacing I by any suitable J we have a notion of J-completeness.
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What we gained

I-complete 2-categories are directed-complete posets.
(-)-complete 2-categories are complete lattices.
I-complete symmetric [0, co]-categories are complete metric spaces.

(-)-complete symmetric [0, oo]-categories are complete metric
spaces.

Still we have other choices of J and Q!
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Fixpoints again

(Knaster-Tarski) A 2-functor on a (-\)—complete 2-category has the
least and the greatest fixed point.

(Banach) A contraction on a I-complete [0, co]-category has a
unique fixed point.

BOTH FOLLOW FROM: A Q-functor f: X — X on a J-complete
Q-category has a fixed point, providing the direct image Q-functor

X — JX
F1(6) 1= inf (6(2) + X(—, 72)

has a fixed point.
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Proof idea

THEOREM A Q-functor f: X — X on a J-complete Q-category
has a fixed point, providing that f*: JX — JX has a fixed point ¢.

Proof:
1. X is J-complete implies (X, <x) is a dcpo.
2. fis a Q-functor implies f is <x-preserving.
3. f* has a fixpoint ¢, implies Sp = SF*(¢) <x f(S9).
4. Then we use Pataraia’s proof of the fact that an

order-preserving map on a dcpo has a least fixed
point. QED.
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How to obtain classic fixed point theorems

THEOREM A Q-functor f: X — X on a J-complete Q-category
has a fixed point, providing that f*: JX — JX has a fixed point ¢.

» (Banach) Take J =T and ¢ = inf,sup,~, X(—,f"xp). Any
choice of xg gives the same ¢, hence the fixed point is unique.

> (Knaster-Tarski) take J = X. Since X is a complete lattice in
the induced order, it has L. Then take ¢ = infsup X(—,7™L)
and get the least point of f. Repeat the same proof for X° to
obtain the greatest fixed point of f.



More fixpoints

(Bourbaki-Witt) An expanding map f: X — X on a dcpo X has
a fixed point.

(James Caristi, 1976) Let f: X — X be an arbitrary map on a
complete metric space. If there exists a l.s.c. map ¢: X — [0, 00)
such that:

(x)  X(x, ) + o(fx) < o(x),

then f has a fixed point.

Remark: f: X — X is expanding iff Vx € X (x < fx).



More fixpoints

(Bourbaki-Witt) An expanding map f: X — X on a dcpo X has
a fixed point.

(James Caristi, 1976) Let f: X — X be an arbitrary map on a
complete metric space. If there exists a l.s.c. map ¢: X — [0, 00)
such that:

(x)  X(x, ) + o(fx) < o(x),

then f has a fixed point.

Remark: f: X — X is expanding iff Vx € X (x < fx).

OUR GOAL: Show that both are instances of a single theorem that
can have no constructive proof.



Unification a la Edalat & Heckmann

Edalat, A. and Heckmann, R. (1998) A computational model for metric
spaces. Theoretical Computer Science 193(1-2), pp. 53-73.

BX ={(x,r)|xe€ X and r >0} C X x R4
(x,ry <{y,s) iff X(x,y)+s<r
X = {(x,0) | x € X}(= max(BX) providing X is Ty).



Unification a la Edalat & Heckmann

Edalat and Heckmann’s construction works the same for
Q-categories. Therefore:

THEOREM
X is an I-complete Q-category iff (BX, <) is a dcpo.
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(Nonsymmetric Caristi) Let f: X — X be an arbitrary map on
a [-complete [0, oo]-category. If there exists a |.s.c. map
¢: X — [0,00) such that:

(x)  X(x &)+ o(fx) < o(x),

then f has a fixed point.

pis Ls.c. iff Z:={(x,px) | x € X} C BX is a dcpo.
Moreover, (*) iff (x,ox) < (Tx,p(Tx)) in BX.

. Hence (*) iff the map (x, ¢x) — (Tx, p(Tx)) is expanding.
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6. Hence (Nonsymmetric Caristi) has no constructive proof either.



But...

. maybe (Caristi) has a constructive proof?

NO.
The proof idea is due to Hannes Diener.



Hannes Diener (photo by Andrej Bauer)
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2. | have argued that theorems of Bourbaki-Witt and Caristi are
in essence 'the same’ — by switching from a metric space X
to its formal ball model BX.

3. In fact, (Nonsymmetric Caristi) can be further generalized to

become a source theorem for both classic results mentioned
in 2.
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It satisfies (a)-(c) as well.

3. Hence f: C — C is an order-preserving and expanding map
on a pointed dcpo. The set of all such maps E(X) is a dcpo in
the pointwise order.

4. Butsince f,g < fogandf,g<gof forany mapsf,gin
E(X), the dcpo E(X) is itself directed.

5. Therefore E(X) has a top element T. We have fo T = T.

6. Hence f(T(L)) = T(L), and for any other fixpoint x € X,
the set | x satisfies (a)-(c), and thus T(L) € C C] x. QED.



