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Abstract. We prove two new fixed point theorems for generalized metric spaces
and show that various fundamental fixed point principles, including: Banach Con-
traction Principle, Caristi fixed point theorem for metric spaces, Knaster-Tarski
fixed point theorem for complete lattices, and the Bourbaki-Witt fixed point the-
orem for directed-complete orders, follow as corollaries of our results.

1. Introduction

In 1973 William Lawvere [11] observed that both orders and metrics are exam-
ples of quantale-enriched categories. Indeed, a partial order can be viewed as a
category enriched in the two-element boolean algebra, and a metric space is a cate-
gory enriched in extended non-negative real numbers r0,8s with addition. Lawere’s
ideas proved to be extremely influential over the years and recently we have been
witnessing a birth of a unified algebraic theory of some of the most fundamental
structures in mathematics: orders, metrics, topologies and uniformites [6, 10].

A futher impulse to study partial order and metric spaces from a unified per-
spective comes from theoretical computer science, where both structures are used as
mathematical models for denotational semantics of programming languages [1, 3, 7].
As it happens one of the main reasons for usefulness of these structures in seman-
tics is existence of fixed points. For a concrete example: in Scott-type denotational
semantics programs are interpreted as certain continuous functions and while loops
are then interpreted as fixed points of these functions.

It is the purpose of this paper to prove some of the most fundamental fixed point
principles from both metric and order fixed point theory in the uniformmathematical
framework offered by Lawvere’s research programme. We prove that there is a single
fixed point theorem for generalized metric spaces that has both Banach Contraction
Principle [2] and Knaster-Tarski fixed point theorem [14] as corollaries. Likewise,
we demonstrate that the Caristi fixed point theorem for complete metric spaces [5]
and the Bourbaki-Witt fixed point theorem for directed-complete orders [4, 17] are
both instances of a single fixed point theorem for generalized metric spaces.

This article is an expanded and corrected version of a conference publication [16].

2. The setup

In order to make our work accessible to the widest spectrum of readers we refrain
from using the specialised language of category theory and phrase our results in the
nomenclature of metrics and orders.
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2.1. Distance spaces. Our primary object of investigation is a set X together
with a distance into r0,8s that satisfies: (a) Xpx, yq � Xpy, xq � 0 iff x � y,
(b) Xpx, zq ¤ Xpx, yq � Xpy, zq, for all x, y, z P X. Note that symmetry of the
distance does not follow from the axioms, hence every X has its nontrivial dual,
Xoppx, yq :� Xpy, xq. On the other hand, adding the axiom of symmetry, together
with Xpx, yq   8 for all x, y P X, makes X a metric space. Although a traditional
name for such spaces is: (extended) quasi-metric spaces [8], in what follows, for the
sake of simplicity, we call X a distance space.

Example 2.1. We define c� b :� infta | c ¤ a� bu for b, c P r0,8s and observe that
it is in fact the usual substraction truncated at zero. Then r0,8s itself is a distance
space with r0,8spb, cq :� c� b.
Example 2.2. If pX,¤q is a partial order, then it can be turned into a distance space
by declaring Xpx, yq � 0 iff x ¤ y and Xpx, yq � 8 otherwise.

2.2. Induced order. Any distance space carries an intrinsic partial order: x ¤X y

iff Xpx, yq � 0. In metric spaces the induced order reduces to equality. In any posetpX,¤q, considered as a distance space, we have ¤X�¤.

2.3. Maps between distance spaces. A map f : X Ñ Y is non-expansive if
Xpx, yq ¥ Y pfx, fyq for all x, y P X. A crucial role in this paper is played by

the set pX of all non-expansive maps of type Xop Ñ r0,8s. By triangle inequality,

for any x P X, the map yXpxqpyq :� Xpy, xq is an element of pX. For other elements

of pX we will use Greek letters φ,ψ, . . ., etc.

The set pX becomes a distance space with pXpφ,ψq :� supzPXpψz � φzq.
2.4. The generalized direct image of a function. Let f : X Ñ Y be any non-

expansive map. Consider f� : pX Ñ pY given by

f�pφqpyq :� inf
xPXpφx� Y py, fxqq.

For example, if z P X, then f�pyXpzqqpyq � infxPXpXpx, zq � Y py, fxqq � Y py, fzq
for all y P Y . Hence f�pyXpzqq � yY pfzq.

Since pXpφ,ψq�f�pφqpyq ¥ infxPXpψx�Y py, fxqq � f�pψqpyq, we get pXpφ,ψq ¥pY pf�pφq, f�pψqq, i.e. f� is non-expansive. The map f� can be interpreted as a gen-

eralized direct image of f , see Sect. 2.6 of [15].

2.5. Ideals. Consider an operation J that assigns to every distance spaceX a subset

JX of pX in such a way that each JX: (a) contains all yXx for all x P X, and (b)
is closed under generalized images of non-expansive maps. We call elements of JX
ideals on X, and we refer to J as the class of ideals. Observe that each JX with

the distance inherited from pX is a distance space.

Example 2.3. pX is a class of ideals.

Example 2.4. Define C � pX by φ P CX if and only if φx :� inf iPI supj¥iXpx, xjq
for some forward Cauchy net pxiqiPI . Recall from [3] that a net pxiqiPI is forward
Cauchy if �ε ¡ 0 DN P I �m ¥ n ¥ N pε ¡ Xpxn, xmqq.
We will often call the above defined φ the ideal associated with pxiqiPI .

Then C is a class of ideals [7].
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Definition 2.5. We say that φ P pX has a supremum SXφ if, for all x P X,

(2.1) XpSXφ, xq � pXpφ, yXxq.
Furthermore, X is J-complete if every φ P JX has a supremum.

It is easy to check that in a J-complete distance space X, the map SX : JX Ñ X

is well-defined and non-expansive.
Observe that in any distance space X, for any y P X, we have SXyXy � y, sincepXpyXy, yXxq � supzPXpXpz, xq �Xpz, yqq � Xpy, xq �Xpy, yq � Xpy, xq.
As a reward for all the above preparations we get the following fact: completeness

of metric spaces, directed-completeness of posets and completeness of lattices are all
instances of J-completeness for some appropriate choices of J :

Lemma 2.6. A metric space X is complete iff it is C-complete.

Proof. Assume X is a complete metric space. Let φ � inf iPI supj¥iXp�, xjq P CX.
Let εn � 1{pn� 1q for n P ω. Define a map µ : ω Ñ I recursively as follows:

µpnq � #Npε0q if n � 0,

maxtNpεnq, µpn� 1qu if n ¡ 0,

where each Npεnq P I is chosen to be an index such that for all i ¥ j ¥ Npεnq we
have Xpxi, xjq   εn. By construction, the sequence pxµpnqqnPω is Cauchy. Let g P X
be its limit. It is now easy to see that φ � yXg and hence SXφ � SXyXg � g.

Conversely, any Cauchy sequence is forward Cauchy, and so defines an C-ideal;
by the paragraph above, the supremum of this ideal is the limit of the sequence. �

Lemma 2.7. A partial order pX,¤q is directed-complete iff it is C-complete.

Proof. Recall that a lower closure of a subset A of the poset X isÓA � tz P X | Da P A pz ¤ aqu.
Instead of Ótxu we write Óx.

Let D be a directed subset of X. Then pxdqdPD, where xd :� d, is a forward
Cauchy net. Let φ be the ideal associated with pxdqdPD. Then in fact

φpzq � #0 if z P ÓD,8 otherwise

hence φ is a characteristic map of ÓD, and φ P CX. From (2.1), for any x P X,

we get SXφ ¤ x iff XpSXφ, xq � 0 iff pXpφ, yXxq � 0 iff ÓD � Óx iff D � Óx. This
proves that SXφ is the least upper bound of D.

Conversely, let φ � inf iPI supj¥iXpx, xjq. Since the net pxiqiPI is forward Cauchy,
there exists an index i0 P I such that xn ¤ xm for all i0 ¤ n ¤ m, i.e. the subset
D :� txi | i P Iu of X is eventually directed. Hence ÓD is an order-ideal and φ is
its characteristic function. By hypothesis

� ÓD exists, and so for any x P X, we

have Xp� ÓD,xq � 0 iff
� ÓD ¤ x iff ÓD � Óx iff pXpφ, yXxq � 0, which shows that� ÓD is the supremum of φ. �

Lemma 2.8. A partial order pX,¤q is a complete lattice iff it is xp�q-complete.
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Proof. Observe that φ P pX iff φ is a characteristic map of a lower subset of X.

Analogously to the proof of Lemma 2.7 we can show that X is xp�q-complete iff
every lower subset has an order-supermum, which in turn is equivalent to X being
a complete lattice. �

2.6. Admissible classes of ideals. Let us call a class J of ideals is admissible if
the intrinsic order ¤X of each J-complete X is directed-complete.

Example 2.9. C is admissible.

Proof. Suppose pxiqiPI is ¤X-directed. Define φ :� inf iPI supj¥iXp�, xjq. Since X
is C-complete, the supremum SXφ P X exists, and now will show that it is the least
upper bound of pxiqiPI .

Let k P I. Firstly observe φpxkq ¤ supj¥kXpxk, xjq � 0. Therefore 0 � φpxkq �pXpyXxk, φq ¥ Xpxk,SXφq, whence xk ¤X SXφ. On the other hand take any upper-
bound u P X of pxiqiPI . Then 0 � Xpxk, uq for all k P I, and consequently 0 �
infk supj¥k

pXpyXxk, yXuq � pXpφ, yXuq � XpSXφ, uq, i.e. SXφ ¤X u. �

Example 2.10. xp�q is admissible. In fact, if X is xp�q-complete, then pX,¤Xq is a com-
plete lattice.

Proof. It is easy to see that the pointwise order on pX is closed under arbitrary
suprema (denoted here as

� pX). Let A � X and a P A. Clearly, yXa ¤ pX � pX yXrAs,
and hence a � SXyXa ¤X SXp� pX yXrAsq. Now, if A ¤X u, then

� pX yX rAs ¤ pX
yXu, and so SXp� pX yXrAsq ¤X SXyXu � u. So far we have shown that X has all
non-empty suprema. But the least element of X is given by SXK pX , as for all x P X,
we have K pX ¤ pX yXx, which implies SXK pX ¤X x. �

Example 2.11. Fix YX :� tyXx | x P Xu for any X. Then each X is Y-complete.
In particular, the poset of natural numbers is Y-complete, but it is not directed-
complete. Therefore Y is not admissible.

3. Intermezzo: Pataraia’s construction of fixed points

A well-known theorem about partial orders states that an order-preserving map
on a pointed dcpo has the least fixed point; remarkably, as shown by D. Pataraia
[13], this statement has a fully constructive proof, formalizable in higher-order intu-
itionistic logic (in 2003 it found an entry to the compendium on continuous lattices
and domains [9], where it is presented as a set of exercises). In what follows, we are
going to use Pataraia’s construction to simultaneously prove Banach’s and Knaster-
Tarski’s theorems. Since we will refer to details of Pataraia’s proof, we shall start
with a concise description of his construction.

Recall that a map f : P Ñ P on a poset P is expanding if x ¤ fx, for all x.
We say that an order-preserving expanding map is inflationary. A dcpo is a short
name for “directed-complete poset”. A poset is pointed, if it has the least element,
usually denoted as K. Now, suppose f is order-preserving on a pointed dcpo P .
Following Pataraia’s line of thought, we look for subsets of P that (a) contain K, (b)
are closed under f , and (c) are directed-complete. Clearly Y :� tx P P | x ¤ fxu is
one of them. Let C be the intersection of all sets with (a)-(c). It is easy to see that
C itself has properties (a)-(c). Therefore, f : C Ñ C is inflationary. Now, the set
EpCq of all inflationary maps on C, ordered pointwise, is directed-complete, and —
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this is the crux of the construction — it is itself a directed set. The reason is that
for g, h P EpCq, we have g, h ¤ g � h. Hence EpCq has a top element m : C Ñ C.
Consequently, f �m � m, and thus f pmpKqq � mpKq, i.e. mpKq P C is a fixed point
of f . If x P P is some other fixed point of f , then Óx :� ty P P | y ¤ xu satisfies
(a)-(c), hence C � Óx and consequently, mpKq ¤ x.

4. Reconciliation of the theorems of Banach and Knaster-Tarski

The main result of this section is the following:

Theorem 4.1. Fix an admissible class of ideals J . Let T : X Ñ X be a non-

expansive map on a J-complete distance space X. Suppose that there exists φ P JX,

which is a fixed point of T �. Then T has a fixed point, which is the least fixed point

of T above SXφ.

Proof. Since X is complete, SXφ exists. Since T is non-expansive:

XpSXpT �pφqq, T pSXφqq � pXpT �pφq, yXpT pSXφqqq� inf
zPXpXpz, T pSXφqq� T �pφqpzqq� inf
zPXpXpz, T pSXφqq� sup

wPXpφw �Xpw, Tzqqq� inf
wPXpsupzPXpXpz, T pSXφqq�Xpw, Tzqq � φwq� inf
wPXpXpTw, T pSXφqq� φwq¤ inf
wPXpXpw,SXφq� φwq¤ 0� φpSXφqq� 0.

Hence SXpT �pφqq ¤X T pSXφq, and so SXφ ¤X T pSXφq. We can now follow steps
of Pataraia’s construction, the only difference being that instead of K, we use SXφ.
Thus T has a fixed point, which is of the form mpSXφq for some m : C Ñ C. Recall
that C � X is the smallest set closed under T and directed lubs that contains
SXφ. Suppose now that x1 is also fixed by T , and that SXφ ¤ x1. Being the lower
cone of a fixed point, Óx1 is closed under T and directed lubs. As a consequence
mpSXφq P C � Óx1. �

The most common situation when ideals are fixed points of T � is the following:

Lemma 4.2. Let T : X Ñ X be a non-expansive map on a distance space X. If for

some x0 P X the sequence pT nx0qnPω is forward Cauchy, then the associated C-ideal

φ is a fixed point of T �.
Proof. Let us first show that φ ¤ pX T �pφq. Fix N P ω, y P X and choose ε ¡ 0 such
that supn¥N Xpy, T nx0q   ε. Then there is δ ¡ 0 with supn¥N Xpy, T nx0q � δ   ε.

Use Cauchyness to get M ¥ N such that for all i ¥M , XpTMx0, T
ix0q   δ. Hence
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supi¥M XpTMx0, T
ix0q ¤X δ. Consequently,

T �pφqpyq � inf
zPXpXpy, Tzq � inf

MPω sup
i¥M

Xpz, T ix0qq¤X inf
zPXpXpy, Tzq � sup

i¥M

Xpz, T ix0qq¤X Xpy, TM�1x0q � sup
i¥M

XpTMx0, T
ix0q¤X sup

n¥M

Xpy, T nx0q � δ¤X sup
n¥N

Xpy, T nx0q � δ  ε.

By the choice of ε, we conclude T �pφqpyq ¤X supn¥N Xpy, T nx0q. This holds for
any N P ω and y P X, therefore T �pφq ¤ pX φ. For the converse, let y, z P X, m P ω
and n ¥ m. Then Xpy, T n�1x0q ¤X Xpy, Tzq � XpTz, T n�1x0q ¤X Xpy, Tzq �
Xpz, T nx0q and thus φy ¤X Xpy, Tzq � φz. Consequently, φ ¤ pX T �pφq. �

As we shall see Thm. 4.1 generalizes common features of three classic fixed point
theorems. In fact all three theorems can be thought of as instances of Thm. 4.1 as
soon as we accept that they differ by the initial choice of a point at which we start
iteration of T .

Theorem 4.3 (Banach). A contraction1 T : X Ñ X on a C-complete distance space

X has a unique fixed point.

Proof. The ideal φz :� infmPω supn¥mpz, T nx0qnPN is a fixed point of T �, for any
choice of x0 P X. The fixed point of T , guaranteed by Thm 4.1, is unique by
contractivity of T . �

Theorem 4.4 (Knaster-Tarski). A non-expansive map T : X Ñ X on a xp�q-complete

distance space has the least and the greatest fixed point.

Proof. The ideal φz :� infmPω supn¥mXpz, T npKqq is a fixed point of T �. By
Thm 4.1, there exists a fixed point of T , which is least above

�
nPω T npKq, and

hence least in X.
Since T is non-expansive on X iff it is non-expansive on Xop, the same construc-

tion applied to Xop in place of X produces the least fixed point of T in Xop, i.e. the
greatest fixed point of X. �

Theorem 4.5. Any non-expansive map T : X Ñ X on a C-complete distance space

with the least element KX has the least fixed point.

Proof. The ideal φz :� infmPω supn¥mXpz, T npKqq is a fixed point of T �. By
Thm 4.1, there exists a fixed point of T , which is least above

�
nPω T npKq, and

hence least in X. �

Remark 4.6. Let X be a xp�q-complete distance space and T be a non-expansive map
with a fixpoint. Then set FixpT q � tx P X | x � Txu of fixed points of T is
a complete lattice in the induced order.

1Since our distance is valued in extended reals, we define a contraction to be a function T : X Ñ X

such that there exists 0   c   1 with Xpx, yq ¤ c �XpTx, Tyq   8, for all x, y P X.
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Indeed, let D � FixpT q. By Example 2.10, the least upper bound
�

X D exists
in pX,¤Xq. It is easy to see that pT np�X DqqnPω is a forward Cauchy sequence.
By Lemma 4.2 and Theorem 4.1, there exists a least fixed point of T above

�
X D,

which is clearly the least upper bound of D in pFixpT q,¤Xq.
Analogously one proves that in a C-complete space, the set FixpT q is a dcpo.

5. Reconciliation of the theorems of Caristi and Bourbaki-Witt

Recall the Caristi theorem [5]:

Theorem 5.1 (Caristi). Let X be a complete metric space and let ϕ : X Ñ r0,8q
be a lower semicontinuous function. Suppose T : X Ñ X is an arbitrary mapping

which satisfies Xpx, Txq � ϕpTxq ¤ ϕpxq for each x P X. Then T has a fixed point.

In what follows we will show that the theorem is still valid in non-symmetric
distance spaces which are C-complete. Our main result of this section is:

Theorem 5.2. Let X be an C-complete distance space and let ϕ : X Ñ r0,8q be

a lower semicontinuous function. Suppose T : X Ñ X is an arbitrary mapping which

satisfies Xpx, Txq � ϕpTxq ¤ ϕpxq for each x P X. Then T has a fixed point.

Interestingly, when X is a directed-complete poset and ϕ is taken to be constant,
then Theorem 5.2 becomes the well-known:

Theorem 5.3 (Bourbaki-Witt). Let X be an dcpo. Suppose T : X Ñ X is expand-

ing. Then T has a fixed point.

Therefore both the Caristi and the Bourbaki-Witt theorems are instances of our
Theorem 5.2.

Proof of Theorem 5.2. The first part of our proof is based on the method proposed
by Oettli and Théra in [12].

For every x P X define

Spxq :� tz P X | Xpx, zq � ϕpzq ¤ ϕpxqu
and

δpxq :� sup
zPSpxqpϕpxq � ϕpzqq.

Then clearly x P Spxq and 0 ¤ δpxq   8 for any x P X. Let x0 P X. Choose
x1 P Spx0q so that

δpx0q � 1 ¤ ϕpx0q � ϕpx1q,
and, inductively, for any n P N such that xn has been defined, choose xn�1 P Spxnq
so that

δpxnq � 1

n� 1
¤ ϕpxnq � ϕpxn�1q.

Observe that if y P Spxk�1q for some k P N, then Xpxk�1, yq ¤ ϕpxk�1q � ϕpyq.
However, Xpxk, xk�1q ¤ ϕpxkq�ϕpxk�1q, henceXpxk, yq ¤ Xpxk, xk�1q�Xpxk�1, yq¤ ϕpxkq�ϕpxk�1q�ϕpxk�1q�ϕpyq � ϕpxkq�ϕpyq, i.e. y P Spxkq. This demonstrates
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Spxk�1q � Spxkq. Therefore,
0 ¤ δpxk�1q� sup

zPSpxk�1qpϕpxk�1q � ϕpzqq� sup
zPSpxk�1qrpϕpxk�1q � ϕpxkqq � pϕpxkq � ϕpzqqs¤ sup
zPSpxkqrpϕpxk�1q � ϕpxkqq � pϕpxkq � ϕpzqqs� δpxkq � pϕpxkq � ϕpxk�1qq¤ 1

k � 1
.

Also Xpxk, xk�1q ¤ ϕpxkq � ϕpxk�1q ¤ δpxkq ¤ 1{k, and so pxkqkPN is a forward
Cauchy sequence. Let φ :� infnPN supk¥nXp�, xkq and w � SXφ.

Since 0 � Xpw,wq � infnPN supk¥nXpxk, wq, we know that

(5.1) �η ¡ 0 Dn �k ¥ n Xpxk, wq   η.

We claim that w P Spxnq for all n P N. Suppose that for some ε, η ¡ 0 we have
ε � η   Xpxn, wq. By (5.1), there exists k ¥ n such that Xpxn, wq ¤ Xpxn, xkq �
Xpxk, wq and Xpxk, wq   η. Therefore ε   Xpxn, xkq ¤ ϕpxnq � ϕpxkq ¤ ϕpxnq �
ϕpxkq�ϕpxkq� limnÑ8 ϕpxnq ¤ ϕpxnq�ϕpwq. This demonstrates that Xpxn, wq�
ϕpwq ¤ ϕpxnq, as required.

As a consequence,

(5.2) δpwq � 0,

(5.3) ϕpwq � ϕpzq, for all z P Spwq,
(5.4) w ¤X z, for all z P Spwq,

Next, we claim that pSpwq,¤X q is a dcpo. Let D be a directed subset of Spwq.
Hence D is a forward Cauchy net in X. Let ψ be its associated C-ideal. Since X is
C-complete, by Example 2.9 the poset pX,¤Xq is directed-complete, and, moreover,
v :� SXψ is a directed supremum of D. Observe that for any d P D, since d P Spwq,
and d ¤X v, then by (5.4) we have w ¤X v. In addition, ϕpvq ¤ infdPD supc¥d ϕpcq �
ϕpwq follows by lower semicontinuity of ϕ and (5.3), respectively. Therefore v P
Spwq, which concludes the proof that Spwq is directed-complete.

Finally, we will show that Spwq is closed under the application of T . Indeed,
suppose that z P Spwq. Hence Xpw, Tzq ¤ Xpw, zq �Xpz, T zq ¤ pϕpwq � ϕpzqq �pϕpzq � ϕpTzqq � ϕpwq � ϕpTzq, which shows Tz P Spwq.

Note that by (5.3), for all z P Spwq we have φpzq � φpTzq, and hence by the
hypothesis of our theorem, Xpz, T zq ¤ ϕpzq�ϕpTzq � 0. Therefore z ¤X Tz, which
demonstates that the map T : Spwq Ñ Spwq is expanding.

To summarize, inside the distance space X we have constructed a dcpo Spwq,
equipped with an expanding map T : Spwq Ñ Spwq. By the Bourbaki-Witt theorem,
T has a fixed point in Spwq, and hence in X. �
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[12] Oettli, W. and Théra, M. (1993) Equivalents of Ekeland’s principle. Bulletin of the Australian
Mathematical Society 48, pp. 385–392.

[13] Pataraia, D. (1997) A constructive proof of Tarski’s fixed-point theorem for dcpos. 65th Peri-
patetic Seminar on Sheaves and Logic, November 1997.

[14] Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of

Mathematics 5(2), pp. 285–309.
[15] Waszkiewicz, P. (2009) On domain theory over Girard quantales. Fundamenta Informaticae

92, p. 1–24.
[16] Waszkiewicz, P. (2010) Common patterns for metric and ordered fixed point theorems. In
Proceedings of the 7th Workshop on Fixed Points in Computer Science (Luigi Santocanale ed.),
pp. 83-87.

[17] Witt, E. (1951) Beweisstudien zum Satz von M. Zorn, Mathematische Nachrichten 4, pp. 434–
438.

Theoretical Computer Science, Jagiellonian University,, ul. S.  Lojasiewicza 6,

30-348 Kraków, Poland., tel.: +48 12 664 75 58; fax: +48 12 664 66 72.

E-mail address: kostanek@tcs.uj.edu.pl, pqw@tcs.uj.edu.pl


